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Hierarchical Multilevel Potential Preconditioner for
Fast Finite-Element Analysis of Microwave Devices
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Abstract—A robust hierarchical multilevel preconditioning lation process, the generated numerical solutions are projected

technique is presented for the fast finite-element analysis of pack onto the original grid on which the higher frequency modes
microwave devices. The proposed preconditioner is based on aare to be calculated accurately.

hierarchical multilevel scheme for the vector-scalar potential . .
finite-element formulation of electromagnetic problems. Numer-  The demonstrated success of these remedies prompted their

ical experiments from the application of the new preconditioner combination into a multigrid vector—scalar potential finite-el-
to the finite-element analysis of microwave devices are used to ement preconditioner that was shown to exhibit outstanding
demonstrate its superior numerical convergence and efficient convergence in conjunction with the analysis of two- and
memory usage. three-dimensional electromagnetic problems [5], [6]. There
Index Terms—Finite-element method, hierarchical basis are two types of multigrid techniques, i.e., geometric and
functions, hierarchical multilevel, vector and scalar potential phiararchical. The geometric multigrid technique uses a set of
formulation. nested multigrids obtained by dividing each tetrahedron in the
coarsest grid into eight equal-volume sub-tetrahedra; hence, the
|. INTRODUCTION geometric multigrid technique functions as/aadaptive FEM.
Its application to electromagnetic problems has been presented

HE finite-element method (FEM) is one of the most effec-

tive and versatile techniques for the modeling of comple'Q [4]-6]. However, for those cases where the domain under

microwave devices [1]. Its application to practical engineerin u.dy. coqtams ;gb-domams wh(_arg the eIectromagnetllc field
ariation is sufficiently smooth, it is found that-adaptive

problems often results in large linear systems requiring iter chemes can tackle numerical dispersion error more effectivel
tive methods for their numerical solution. However, the conver- . Persi . vely
Iaan h-adaptive ones. Therefore, in this paper, a hierarchical

gence of iterative solvers tends to be unpredictable for elect ultilevel vector—scalar potential finite-element preconditioner
magnetic-wave problems, even when common preconditione% P P

such as incomplete LU factorization, are used to improve C0||§_proposed that uses only one grid and a set of hierarchical

: : 20 1
vergence. basis function spaces, i.eH"(curl) and H*(curl), for the

The reasons for the slow convergence of the iterative sol\}:e'?M approximation and solution of the electromagnetic

are by now well understood. They are associated with the Egundary-value pr‘?b'em- ) N

modes contained in the null space of the curl operator, and thel '€ USe of a hierarchical preconditioner and a so-called
ill conditioning of the FEM matrix resulting from the oversam-£-field Schwartz solver for the FEM solution of the electro-
pling of the low-frequency physical modes [2]. As was proposéﬂagnet'c boundary-value problem was proposed in [7] and [8].
in [3], the spurious dc modes can be canceled by introducing*§hough the proposed solver showed much faster convergence
spurious electric charge and imposing the divergence-free cGmpared to other commonly used FEM solvers, its implemen-
dition V- D = 0, explicitly in the weak statement of the electrolation of the divergence-free condition is not complete, in the
magnetic problem. Use of the vector—scalar potential-(V) ~S€nse that. the lowest ord.er spalar basis functions are missing.
formulation for the development of the FEM approximation i&N€ téchnique proposed in this paper can be understood as an
most suitable for this purpose. On the other hand, the difficultie— ¥ Potential Schwartz solver that overcomes this deficiency
associated with low-frequency physical modes can be tack/@ad yields a h|erarch|cal_ multilevel FEM solver with superior
effectively by solving problems tentatively on coarser grids [4°nvergence and numerical robustness. _
or in lower order basis function spaces. More specifically, those T € Paper is organized as follows. First, the FEM approxi-
modes that are oversampled on the original FEM grid can Bitions for theE-field and A — V' potential formulations of
solved withoutloss of accuracy using an FEM system with mudR€ electromagnetic problem are developed orffig-url) and

fewer degrees of freedom. Subsequently, through an interprﬁ(cuﬂ) spaces. Through this development, those attributes of
the potential formulation that improve the convergence of the

iterative matrix solution process are highlighted. Next, the hi-
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Whereﬁi is the associated normalized magnetic-field distribu-
tion of the mode orf;.

Following Galerkin’s approach, the testing functicisand
the expansion functions foE are the bases in the tangen-
tially continuous vector (TV) spaces [9]. Thith TV space is
H(curl), for which both its basis functions and theirr! are
complete to théth order vector polynomial functions [8], [9].

The lowest (zeroth-order) order TV spaced$(curl), often
referred to as “edge elements.” For each €dgg), there is one
basis function ind°(curl) space as follows:

Consider a three-dimensional multiport electromagnetic de- 0
vice with the generic schematic representation depicted in Fig. 1. H(curl) = spar{CNCj - CJVQ‘}- ®)
For the purposes of this paper, all media are assumed to be lingfg first-order TV space can be written as
isotropic, nonmagnetic, and time invariant. The weak statement

Fig. 1. Multiport electromagnetic device.

Il. FIELD FORMULATION

of the governing electric-field vector Helmholtz equation H'(cwrl) = H(curl) @ VWSQ, c® RtQV, f (6)
V XV x B —wugeoen B = 0 1) whereW? _ represents the second-order edge-type scalar sub-
spaces [9], the gradient of which is added to make bases in
is well known and is given by H'(curl) complete to first-order polynomials. For each edge
,, ) S (i, 4), there is one basis function 2
/VXu_f-VxEdv—jwuoj{ nx H- -wds ’
@ 0% W2 . = spaf¢i¢;}- (7)

5 IR
—W Hoco /Q W-ebdv=0 (2) Fipally, R}, ; denotes the second-order face-type nongradient
h = is th basis f . d for th TV subspace [9], the addition of which makes the curl of the
where @ is the FEM basis function used for the numerbasesirﬂl(curl) complete to first-order polynomials. For each

ical approximation of the vector electric field. In order tQace(z‘ J. k), there are two basis functionst s [6]
address the general case, the computational dorfairs e v, f

assumed to be bounded by both microwave port boundé&yjes R, ;= spar{4<}(<’jVCk — GV, 4G (VG — GV G) b
t=1,2,..., N, and a numerical truncation boundafy on " 8)

which afirst-ordgr absorbing boundary condition is imposed to Use of H'(cutl) yields the following FEM matrix for the
mod_el the associated unpou_n(_jed region. _ weak statement (3):

Without loss of generality, it is assumed that each microwave
port is associated with the cross section of a waveguide with Myp Mg T . [
known modal solutions. This is typically the case for most prac- MY MY, %, - 12
tical multiport microwave devices of interest. Furthermore, to
simplify the mathematical statement of the weak formulation ¥fherez contains the expansion coefficients 8P (curl), and
the electromagnetic problem, and without loss of generality, 4tz contains the expansion coefficients \@iV? @ R, ;. The
is assumed that, at each waveguide port, only the fundamersigcific forms of the entries @i}/, are easily deduced through
mode propagates. Following standard microwave circuit anal-direct comparison with (3).
ysis procedures, lef; be the excitation port. The weak form of As it has been elaborated in [2] and [5], the direct application

)

the driven problem becomes of an iterative solver, such as conjugate gradient (CG), to the
. . solution of the FEM matrix exhibits slow convergence. The

/ Vxw-Vx Edv +jk0/ nXwW-nx FEds reason is that, at the specific operating frequency, all dc modes

§2 S0 and some low-frequency ones below the operating frequency

N = 5 L = are shifted to the left-hand side of the frequency plane, thus
+ Z jkz:i/s_ < - Bds —w” pioco /Q W dv yondering the system matrix highly ill conditioned. Common
=t ' preconditioners, such as incomplete Cholesky factorization,
= 2jk. 1 / X wWw-nxeéds (3) tend to perform very poorly [2]. The additive or multiplicative
S Schwartz preconditioner of (9), which uses direct factorization
wherek. ; is the propagation constant for the single propagatireg the H(curl) level, has been shown to exhibit faster con-
mode at théth port, ands; is the associated normalized electricvergence [7]. In this paper, we propose to apply the Schwartz
field distribution of the mode 08;. Once the numerical solution technique to the vector and scalar potential formulation.
has been obtained, the reflection coefficient at ghrand the
transmission coefficients at the remaining ports are obtained as lll. POTENTIAL FORMULATION

follows: As already mentioned in Section I, the spurious dc modes can

Sy = / AxE-hids—1 be suppressed by using the vector and scalar potential formu-
S4 lation to impose the divergence-free condition on the electric
field explicitly. In addition, the low-frequency modes can be

Sin = /57_ A XCE Dy ds “) pre-solved accurately in tHé°(curl) space. These observations
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motivate the proposition for a hierarchical multilevel potentiakhere the vector?,. contains the expansion coefficients for
preconditioner to tackle the convergence difficulties associatétf (curl) @VWsl .» While the vector;,, contains the ones for
with the iterative solution of the electromagnetic FEM systenk? ;& VW2 The entries of the matrlcdwfgv are evident
The development of the proposed preconditioner begins wtﬂirough a d|rect comparison of (10) and (11) with (16).
the discussion of the hierarchical potential formulation. This is Alternatively, the more traditional matrix form of (10) and
followed by the presentation of the algorithm for the multilevel11) that separates the vector and scalar potentials is
preconditioner, given in the following section.

Following [3] and [5], the electric field is written a& = Pss Pay A Ja
A+ VvV, Thus, the weak form of the curl—curl equation for the Pva Pov - fv
electric field (1) becomes

17

[ave

. - . A - wherez 4 contains the expansion coefficients far while Ty
/QV X @V x Adv+ jko . nxwsnx (A T VV) s contains the ones fdr. In this form, it is clearly seen that the
divergence-free condition is imposed explicitly.

+Z;k/s A XB - (EJFVV) ds

IV. TRANSFORMATION BETWEEN THE TWO FORMULATIONS

—w2uo€o/ e, (A + VV) dv The hierarchical field and potential formulations are equiv-
& alent. Their equivalency can be proven through careful exami-
= 2jk., 1/ X W -h X éds. (10) nation of (9) and (16). Due to the bilinear form of the system
1 matrices and the linear form of the right-hand sides, it is
The weak form of the divergence-free equation D = L L
is obtained through its multiplication with the gradient of the fav =TE
scalar basis functioiv¢ and the subsequent integration over 7, = < I ) I (18)
the volume of interest. This yields Av £

jko/ ﬁxv¢-ﬁx(ﬁ+vv)d3+2jkz,i/ﬁxw and
Sa i S;

; B} My =My
A (A+vv) ds — w oo -/Q 2 (A+vv) v MO Z MO (1 @)
= 2ij,1/5 A X Vi x & ds. (11) MO, — <GIT) ML
1
0 i i iong I
For the H"(curl) potential formulation, the functions and M9, = <GT> M®.(I, G) (19)
¢ are chosen as
@ € H(curl), WS, (12) and
whereWS{ . IS the first-order node-type scalar subspace [9] T =24y
Wl n = {CO? Clv C?v C3} (13) xOE = (I7 G).I'?{V. (20)
For anH!(curl) potential formulation, the following choice In the above,I denotes the identity matrix. Using (18), the
must be made: right-hand sides in the field formulation can be transformed to

the ones in the potential formulation. Using (20), the solutions
in potential formulation can be transformed back to the ones
That is, the basis functions if*(curl) are decomposed into of field formulation. Hence, the transformation between the
two parts. The part containing the nongradient subspade® formulations is straightforward and enables the following
H%curl) and R?, oy is used to expand the vector potentialmethodology for the construction of a robust preconditioner for
while the part containing the gradient subspag€$,, and a spurious mode-free iterative solution of (9).

W2 is used to expand the scalar potential. F|naIIy, as it has

been elaborated in [3] and [}, W, S ,, is a subset off%(curl). V. HIERARCHICAL MULTILEVEL POTENTIAL PRECONDITIONER
Thus, a transition matrig exists between the two spaces such
that

@e Hcutl) @ Ry, ; peW, oW, (14)

Consider the calculation of the pseudoresidual equation in

each step of the iterative solution of (9) as follows:
1 0
VW, = H"(curl)G. (15) ML, M, AL rl »
In view of the above, the matrix representation of (10) and MY, M, 22 o ro ] (1)
(11) may be cast in a hierarchical form as follows:

" 0 L L The following smoothing technique can be used as a single-level
My My Tav ) _ Fav (16) preconditioner. First, (21) is transformed to the matrix equation
MG, MY of the potential formulation using (18) and (19). Next, in the

0
Lav fav
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potential formulation, the matrix equation (17) is solved in two  *** ; ‘ ‘ ? " : "
steps. Step 1 involves the solution:of from the following: g ]
Pyaza =14 — Pavay. (22) §'°°°' F T ’
‘*’ EEE
—— DCG

Step 2 explicitly imposes the divergence-free condition in orde

to suppress the spurious dc modes to a certain level by solvir ¢ M

) 02 04 06 08 1 1.2 14 16 18
zy through the following: Number of Unkniowns xao’

Pyyvaey =1y — Pyaza. (23)

Both of the above are approximate solutions and are effecte g
either through an incomplete Cholesky factorization or througt &
the Gauss—Seidel method. Finally, once the solution for the pc
tential formulation is obtained, itis transformed back to the field
formulation using (20). o2 oa 06 08
However, as already mentioned previously, the single-leve.

potential preconditioner cannot tackle efficiently the ill CondiFig. 2. CPU time and number of iterations versus the number of unknowns for
tioning caused by low-frequency modes. To overcome this dif-microstrip line.

ficulty and improve convergence, the above (single-level) pre-

conditioning process is combined with multilevel techniques. . . . . .
: ? . o : heref is the right-hand-side vector of the matrix equation as-
This extension of the single-level preconditioner to a multilevel . L )
uming the initial guess vector is zero. In all cases, the number

one is described in the following typical multilevel pseudoco & pre-smoothing and post-smoothing operations was taken to

1 1.2 14 6 18
Number of Unknowns x10°

MG(re, 2g, 9). bevl = v2 = 3. All calculations were performed on a Pentium

1) zg < 0, Il 600-MHz PC.

2) if i == 0, then soveMgpzp = rp. I/ lowest level Fig. 2 shows the CPU time and number of iterations required

3) else for convergence versus the number of unknowns for the simple
3a) smooth{g, 7g) for vy times. geometry of a microstrip line. The operating frequency is
3b) riyt — I Y(rg — Mppzp) 20 GHz. The number of unknowns is varied by adjusting the
3¢) MGyt i Hi — 1) line length from 200 to 1200 mil (i.e«1.5 A to ~10.0 X at
3d) zp — 2p + I{_1 25" the operating frequency). This translates to an increase in the
3e) smooth{g, 7g) for vy times. number of unknowns from 29 468 to 175 426. The average grid

Smoothgg, rg) denotes in a short-hand notation the singlesize for all cases is approximately 0.25
level potential preconditioner discussed at the beginning of this|t can be seen that the proposed multilevel preconditioner
section.I; " is the restriction operator that maps the residual @ads to superior convergence of the iterative solution. The
theith level matrix equation down to thg — 1)th level.I;_;  number of iterations varies from eight for the shortest line to
is the interpolation operator that interpolates the correction o4 for the longest line. This increase with the electrical length
tained on thei — 1)th level back to théth level. The use of the of the structure is attributed to the numerical dispersion error,
hierarchical basis functions facilitates greatly the implement@hich also increases with the electrical length. The required
tion of these operations. . CPU time increases almost linearly from 30.65 to 326.16 s.

The proposed preconditioner constitutesan- V' poten- For the sake of comparison, the convergence of the iterative
tial multiplicative Schwartz preconditoner instead of fidield  solution using the diagonal-preconditioned conjugate gradient
Schwartz preconditioner proposed in [7]. It uses direct factorizeCG) method is also shown. Clearly, its performance is poor,
tion on the lowest level block d°(curl), and Gauss—Seidel onwith the number of iterations increasing linearly with the
the higher level block. The Schwartz operation is applied to thgmber of unknowns. More importantly, the required CPU
matrix equation of the potential formulation so that the impaime increases quadratically with the number of unknowns.
sition of the divergence-free constraint is implemented in th@ther incomplete factorization-based preconditioners exhibit

second-order complete scalar spékg,, & W7 . fairly similar performance with the DCG, both in terms of the
number of iterations and CPU time.
VI. NUMERICAL RESULTS The next example considers the electromagnetic analysis of

g\}e waveguide filter studied in [10]. The geometry and dimen-
mians of the filter are shown in the insert of Fig. 3. The finite-el-

imum residual method (GMRES). In the following tests, chmentgrid used has an average spatial sampling rate of approx-

was used. The stopping criterion used for the iterative sol\)gf’f‘tely 7.80 pt.}‘\ at 18 GHz. The number of unknowns at the
was H*(curl) level is 42526. The calculated scattering parameters

are in excellent agreement with the results in [10].
The excellent convergence of the proposed preconditioned it-
erative solverisillustrated in Fig. 4. The required total CPU time

The proposed preconditioners can be combined with a Kryl
subspace-based iterative solver, such as CG or generalized

[[7lloo

[1/1loo

= tol, tol = 1.0e—6 (24)
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Fig. 3. Magnitude of scattering parameters for the waveguide filter of [10].
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Fig. 4. Convergence behavior of the proposed preconditioner applied to th_
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analysis of the waveguide filter of [10].

TABLE |
CONVERGENCECOMPARISON OFCG SOLVERS AT 15.0 GHz
freq. (GHz) 15.0
No # of iter. 4394
preconditoner | cpu (sec) || 1339.22
Single-level | # of iter. 58
A-V cpu (sec) 108.01
Multilevel # of iter. 11
A-V cpu (sec) 34.23
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Fig. 5. (a) Convergence comparison of three CG solvers. (b) Convergence
comparison of multilevel preconditioned CG and GMRES.
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Fig. 6. Magnitude of the scattering parameters of the low-pass filter analyzed
in [11].

GMRES at 15.0 GHz is provided to demonstrate the similarity
in their convergence behavior.

The last example considers the FEM analysis of the low-pass
microstrip filter shown in the insert of Fig. 6. A 34% 375
x 150 miP computational domain is used with the absorbing
boundary set 75 mil above the filter. The finite-element grid used
had an average spatial sampling rate of 8.3.ptthe number
of unknowns at thef(curl) level is 88 708. The calculated
scattering parameters are in good agreement with the data in

at 12,15, and 18 GHz is 32.91, 34.23, and 39.65 s, respectivglyi]. It is noted that the mesh used is rather uniform. Use of a
The memory usage is 30 MB.

nonuniform mesh with higher density in the immediate vicinity

To demonstrate the superiority of the proposed preconditthe metallization is expected to improve solution accuracy.
tioners, the convergence performance and behavior of three C®nce again, the convergence of the proposed iterative solver
solvers, namely, un-preconditioned, single-level, and multilevisl excellent, as demonstrated by the curves in Fig. 7. The re-
potential preconditioned at 15.0 GHz are compared in Tablguired CPU times for the solution at 0.5, 9.0, and 18.0 GHz are
and Fig. 5(a). The single-level potential preconditioner £94.54, 209.44, and 219.29 s, respectively. The memory usage
obtained by neglecting steps (i.e., 3b—3d) in the multileved 70 MB.
pseudocode. Clearly, its performance is better than the ondo test the robustness of the proposed preconditioners, the
of the un-preconditioned CG because it renders the seaogerating frequency was set to 40.0 GHz. At this frequency, the
vectors divergence free. Its performance is further improved byerage grid size is 4.2 pt/ The convergence behavior of the
the multilevel potential preconditioner because of its effectitree CG solvers, depicted in Fig. 8, clearly demonstrates the

handling of the physical low-frequency modes. In Fig. 5(b), @mbustness of the proposed single-level and multilevel potential
comparison of the multilevel potential preconditioned CG argteconditioners.
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