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Hierarchical Multilevel Potential Preconditioner for
Fast Finite-Element Analysis of Microwave Devices

Yu Zhu, Student Member, IEEE,and Andreas C. Cangellaris, Fellow, IEEE

Abstract—A robust hierarchical multilevel preconditioning
technique is presented for the fast finite-element analysis of
microwave devices. The proposed preconditioner is based on a
hierarchical multilevel scheme for the vector–scalar potential
finite-element formulation of electromagnetic problems. Numer-
ical experiments from the application of the new preconditioner
to the finite-element analysis of microwave devices are used to
demonstrate its superior numerical convergence and efficient
memory usage.

Index Terms—Finite-element method, hierarchical basis
functions, hierarchical multilevel, vector and scalar potential
formulation.

I. INTRODUCTION

T HE finite-element method (FEM) is one of the most effec-
tive and versatile techniques for the modeling of complex

microwave devices [1]. Its application to practical engineering
problems often results in large linear systems requiring itera-
tive methods for their numerical solution. However, the conver-
gence of iterative solvers tends to be unpredictable for electro-
magnetic-wave problems, even when common preconditioners,
such as incomplete LU factorization, are used to improve con-
vergence.

The reasons for the slow convergence of the iterative solver
are by now well understood. They are associated with the dc
modes contained in the null space of the curl operator, and the
ill conditioning of the FEM matrix resulting from the oversam-
pling of the low-frequency physical modes [2]. As was proposed
in [3], the spurious dc modes can be canceled by introducing a
spurious electric charge and imposing the divergence-free con-
dition , explicitly in the weak statement of the electro-
magnetic problem. Use of the vector–scalar potential ( )
formulation for the development of the FEM approximation is
most suitable for this purpose. On the other hand, the difficulties
associated with low-frequency physical modes can be tackled
effectively by solving problems tentatively on coarser grids [4]
or in lower order basis function spaces. More specifically, those
modes that are oversampled on the original FEM grid can be
solved without loss of accuracy using an FEM system with much
fewer degrees of freedom. Subsequently, through an interpo-
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lation process, the generated numerical solutions are projected
back onto the original grid on which the higher frequency modes
are to be calculated accurately.

The demonstrated success of these remedies prompted their
combination into a multigrid vector–scalar potential finite-el-
ement preconditioner that was shown to exhibit outstanding
convergence in conjunction with the analysis of two- and
three-dimensional electromagnetic problems [5], [6]. There
are two types of multigrid techniques, i.e., geometric and
hierarchical. The geometric multigrid technique uses a set of
nested multigrids obtained by dividing each tetrahedron in the
coarsest grid into eight equal-volume sub-tetrahedra; hence, the
geometric multigrid technique functions as an-adaptive FEM.
Its application to electromagnetic problems has been presented
in [4]–[6]. However, for those cases where the domain under
study contains sub-domains where the electromagnetic field
variation is sufficiently smooth, it is found that-adaptive
schemes can tackle numerical dispersion error more effectively
than -adaptive ones. Therefore, in this paper, a hierarchical
multilevel vector–scalar potential finite-element preconditioner
is proposed that uses only one grid and a set of hierarchical
basis function spaces, i.e., and , for the
FEM approximation and solution of the electromagnetic
boundary-value problem.

The use of a hierarchical preconditioner and a so-called
-field Schwartz solver for the FEM solution of the electro-

magnetic boundary-value problem was proposed in [7] and [8].
Although the proposed solver showed much faster convergence
compared to other commonly used FEM solvers, its implemen-
tation of the divergence-free condition is not complete, in the
sense that the lowest order scalar basis functions are missing.
The technique proposed in this paper can be understood as an

potential Schwartz solver that overcomes this deficiency
and yields a hierarchical multilevel FEM solver with superior
convergence and numerical robustness.

The paper is organized as follows. First, the FEM approxi-
mations for the -field and potential formulations of
the electromagnetic problem are developed on the and

spaces. Through this development, those attributes of
the potential formulation that improve the convergence of the
iterative matrix solution process are highlighted. Next, the hi-
erarchical multilevel potential preconditioner is presented. This
paper concludes with the application of the proposed precondi-
tioner to the electromagnetic analysis of rectangular waveguide
and microstrip devices. These numerical studies help validate
the computer implementation of the new method and demon-
strate its superior convergence properties.
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Fig. 1. Multiport electromagnetic device.

II. FIELD FORMULATION

Consider a three-dimensional multiport electromagnetic de-
vice with the generic schematic representation depicted in Fig. 1.
For the purposes of this paper, all media are assumed to be linear,
isotropic, nonmagnetic, and time invariant. The weak statement
of the governing electric-field vector Helmholtz equation

(1)

is well known and is given by

(2)

where is the FEM basis function used for the numer-
ical approximation of the vector electric field. In order to
address the general case, the computational domainis
assumed to be bounded by both microwave port boundaries,

, and a numerical truncation boundary on
which a first-order absorbing boundary condition is imposed to
model the associated unbounded region.

Without loss of generality, it is assumed that each microwave
port is associated with the cross section of a waveguide with
known modal solutions. This is typically the case for most prac-
tical multiport microwave devices of interest. Furthermore, to
simplify the mathematical statement of the weak formulation of
the electromagnetic problem, and without loss of generality, it
is assumed that, at each waveguide port, only the fundamental
mode propagates. Following standard microwave circuit anal-
ysis procedures, let be the excitation port. The weak form of
the driven problem becomes

(3)

where is the propagation constant for the single propagating
mode at theth port, and is the associated normalized electric-
field distribution of the mode on . Once the numerical solution
has been obtained, the reflection coefficient at portand the
transmission coefficients at the remaining ports are obtained as
follows:

(4)

where is the associated normalized magnetic-field distribu-
tion of the mode on .

Following Galerkin’s approach, the testing functionsand
the expansion functions for are the bases in the tangen-
tially continuous vector (TV) spaces [9]. Theth TV space is

, for which both its basis functions and their are
complete to theth order vector polynomial functions [8], [9].

The lowest (zeroth-order) order TV space is , often
referred to as “edge elements.” For each edge , there is one
basis function in space as follows:

span (5)

The first-order TV space can be written as

(6)

where represents the second-order edge-type scalar sub-
spaces [9], the gradient of which is added to make bases in

complete to first-order polynomials. For each edge
, there is one basis function in

span (7)

Finally, denotes the second-order face-type nongradient
TV subspace [9], the addition of which makes the curl of the
bases in complete to first-order polynomials. For each
face , there are two basis functions in as [8]

span
(8)

Use of yields the following FEM matrix for the
weak statement (3):

(9)

where contains the expansion coefficients for , and
contains the expansion coefficients for . The

specific forms of the entries of are easily deduced through
a direct comparison with (3).

As it has been elaborated in [2] and [5], the direct application
of an iterative solver, such as conjugate gradient (CG), to the
solution of the FEM matrix exhibits slow convergence. The
reason is that, at the specific operating frequency, all dc modes
and some low-frequency ones below the operating frequency
are shifted to the left-hand side of the frequency plane, thus
rendering the system matrix highly ill conditioned. Common
preconditioners, such as incomplete Cholesky factorization,
tend to perform very poorly [2]. The additive or multiplicative
Schwartz preconditioner of (9), which uses direct factorization
at the level, has been shown to exhibit faster con-
vergence [7]. In this paper, we propose to apply the Schwartz
technique to the vector and scalar potential formulation.

III. POTENTIAL FORMULATION

As already mentioned in Section I, the spurious dc modes can
be suppressed by using the vector and scalar potential formu-
lation to impose the divergence-free condition on the electric
field explicitly. In addition, the low-frequency modes can be
pre-solved accurately in the space. These observations



1986 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 8, AUGUST 2002

motivate the proposition for a hierarchical multilevel potential
preconditioner to tackle the convergence difficulties associated
with the iterative solution of the electromagnetic FEM system.
The development of the proposed preconditioner begins with
the discussion of the hierarchical potential formulation. This is
followed by the presentation of the algorithm for the multilevel
preconditioner, given in the following section.

Following [3] and [5], the electric field is written as
. Thus, the weak form of the curl–curl equation for the

electric field (1) becomes

(10)

The weak form of the divergence-free equation
is obtained through its multiplication with the gradient of the
scalar basis function and the subsequent integration over
the volume of interest. This yields

(11)

For the potential formulation, the functions and
are chosen as

(12)

where is the first-order node-type scalar subspace [9]

(13)

For an potential formulation, the following choice
must be made:

(14)

That is, the basis functions in are decomposed into
two parts. The part containing the nongradient subspaces

and is used to expand the vector potential,
while the part containing the gradient subspaces and

is used to expand the scalar potential. Finally, as it has
been elaborated in [3] and [9], is a subset of .
Thus, a transition matrix exists between the two spaces such
that

(15)

In view of the above, the matrix representation of (10) and
(11) may be cast in a hierarchical form as follows:

(16)

where the vector contains the expansion coefficients for
, while the vector contains the ones for

. The entries of the matrices are evident
through a direct comparison of (10) and (11) with (16).

Alternatively, the more traditional matrix form of (10) and
(11) that separates the vector and scalar potentials is

(17)

where contains the expansion coefficients for, while
contains the ones for . In this form, it is clearly seen that the
divergence-free condition is imposed explicitly.

IV. TRANSFORMATIONBETWEEN THETWO FORMULATIONS

The hierarchical field and potential formulations are equiv-
alent. Their equivalency can be proven through careful exami-
nation of (9) and (16). Due to the bilinear form of the system
matrices and the linear form of the right-hand sides, it is

(18)

and

(19)

and

(20)

In the above, denotes the identity matrix. Using (18), the
right-hand sides in the field formulation can be transformed to
the ones in the potential formulation. Using (20), the solutions
in potential formulation can be transformed back to the ones
of field formulation. Hence, the transformation between the
two formulations is straightforward and enables the following
methodology for the construction of a robust preconditioner for
a spurious mode-free iterative solution of (9).

V. HIERARCHICAL MULTILEVEL POTENTIAL PRECONDITIONER

Consider the calculation of the pseudoresidual equation in
each step of the iterative solution of (9) as follows:

(21)

The following smoothing technique can be used as a single-level
preconditioner. First, (21) is transformed to the matrix equation
of the potential formulation using (18) and (19). Next, in the
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potential formulation, the matrix equation (17) is solved in two
steps. Step 1 involves the solution of from the following:

(22)

Step 2 explicitly imposes the divergence-free condition in order
to suppress the spurious dc modes to a certain level by solving

through the following:

(23)

Both of the above are approximate solutions and are effected
either through an incomplete Cholesky factorization or through
the Gauss–Seidel method. Finally, once the solution for the po-
tential formulation is obtained, it is transformed back to the field
formulation using (20).

However, as already mentioned previously, the single-level
potential preconditioner cannot tackle efficiently the ill condi-
tioning caused by low-frequency modes. To overcome this dif-
ficulty and improve convergence, the above (single-level) pre-
conditioning process is combined with multilevel techniques.
This extension of the single-level preconditioner to a multilevel
one is described in the following typical multilevel pseudocode
MG( ).

1) ,
2) if , then solve . // lowest level
3) else

3a) smooth( , ) for times.
3b)
3c) MG( , , )
3d)
3e) smooth( , ) for times.

Smooth( , ) denotes in a short-hand notation the single-
level potential preconditioner discussed at the beginning of this
section. is the restriction operator that maps the residual of
the th level matrix equation down to the th level.
is the interpolation operator that interpolates the correction ob-
tained on the th level back to theth level. The use of the
hierarchical basis functions facilitates greatly the implementa-
tion of these operations.

The proposed preconditioner constitutes an poten-
tial multiplicative Schwartz preconditoner instead of the-field
Schwartz preconditioner proposed in [7]. It uses direct factoriza-
tion on the lowest level block of , and Gauss–Seidel on
the higher level block. The Schwartz operation is applied to the
matrix equation of the potential formulation so that the impo-
sition of the divergence-free constraint is implemented in the
second-order complete scalar space .

VI. NUMERICAL RESULTS

The proposed preconditioners can be combined with a Krylov
subspace-based iterative solver, such as CG or generalized min-
imum residual method (GMRES). In the following tests, CG
was used. The stopping criterion used for the iterative solver
was

(24)

Fig. 2. CPU time and number of iterations versus the number of unknowns for
a microstrip line.

where is the right-hand-side vector of the matrix equation as-
suming the initial guess vector is zero. In all cases, the number
of pre-smoothing and post-smoothing operations was taken to
be . All calculations were performed on a Pentium
III 600-MHz PC.

Fig. 2 shows the CPU time and number of iterations required
for convergence versus the number of unknowns for the simple
geometry of a microstrip line. The operating frequency is
20 GHz. The number of unknowns is varied by adjusting the
line length from 200 to 1200 mil (i.e., 1.5 to 10.0 at
the operating frequency). This translates to an increase in the
number of unknowns from 29 468 to 175 426. The average grid
size for all cases is approximately 0.25.

It can be seen that the proposed multilevel preconditioner
leads to superior convergence of the iterative solution. The
number of iterations varies from eight for the shortest line to
14 for the longest line. This increase with the electrical length
of the structure is attributed to the numerical dispersion error,
which also increases with the electrical length. The required
CPU time increases almost linearly from 30.65 to 326.16 s.
For the sake of comparison, the convergence of the iterative
solution using the diagonal-preconditioned conjugate gradient
(DCG) method is also shown. Clearly, its performance is poor,
with the number of iterations increasing linearly with the
number of unknowns. More importantly, the required CPU
time increases quadratically with the number of unknowns.
Other incomplete factorization-based preconditioners exhibit
fairly similar performance with the DCG, both in terms of the
number of iterations and CPU time.

The next example considers the electromagnetic analysis of
the waveguide filter studied in [10]. The geometry and dimen-
sions of the filter are shown in the insert of Fig. 3. The finite-el-
ement grid used has an average spatial sampling rate of approx-
imately 7.80 pt/ at 18 GHz. The number of unknowns at the

level is 42 526. The calculated scattering parameters
are in excellent agreement with the results in [10].

The excellent convergence of the proposed preconditioned it-
erative solver is illustrated in Fig. 4. The required total CPU time
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Fig. 3. Magnitude of scattering parameters for the waveguide filter of [10].

Fig. 4. Convergence behavior of the proposed preconditioner applied to the
analysis of the waveguide filter of [10].

TABLE I
CONVERGENCECOMPARISON OFCG SOLVERS AT 15.0 GHz

at 12, 15, and 18 GHz is 32.91, 34.23, and 39.65 s, respectively.
The memory usage is 30 MB.

To demonstrate the superiority of the proposed precondi-
tioners, the convergence performance and behavior of three CG
solvers, namely, un-preconditioned, single-level, and multilevel
potential preconditioned at 15.0 GHz are compared in Table I
and Fig. 5(a). The single-level potential preconditioner is
obtained by neglecting steps (i.e., 3b–3d) in the multilevel
pseudocode. Clearly, its performance is better than the one
of the un-preconditioned CG because it renders the search
vectors divergence free. Its performance is further improved by
the multilevel potential preconditioner because of its effective
handling of the physical low-frequency modes. In Fig. 5(b), a
comparison of the multilevel potential preconditioned CG and

(a) (b)

Fig. 5. (a) Convergence comparison of three CG solvers. (b) Convergence
comparison of multilevel preconditioned CG and GMRES.

Fig. 6. Magnitude of the scattering parameters of the low-pass filter analyzed
in [11].

GMRES at 15.0 GHz is provided to demonstrate the similarity
in their convergence behavior.

The last example considers the FEM analysis of the low-pass
microstrip filter shown in the insert of Fig. 6. A 345 375

150 mil computational domain is used with the absorbing
boundary set 75 mil above the filter. The finite-element grid used
had an average spatial sampling rate of 8.5 pt/. The number
of unknowns at the level is 88 708. The calculated
scattering parameters are in good agreement with the data in
[11]. It is noted that the mesh used is rather uniform. Use of a
nonuniform mesh with higher density in the immediate vicinity
of the metallization is expected to improve solution accuracy.

Once again, the convergence of the proposed iterative solver
is excellent, as demonstrated by the curves in Fig. 7. The re-
quired CPU times for the solution at 0.5, 9.0, and 18.0 GHz are
194.54, 209.44, and 219.29 s, respectively. The memory usage
is 70 MB.

To test the robustness of the proposed preconditioners, the
operating frequency was set to 40.0 GHz. At this frequency, the
average grid size is 4.2 pt/. The convergence behavior of the
three CG solvers, depicted in Fig. 8, clearly demonstrates the
robustness of the proposed single-level and multilevel potential
preconditioners.
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Fig. 7. Convergence behavior of the proposed preconditioner.

Fig. 8. Convergence comparison of three CG solvers.

VII. CONCLUDING REMARKS

In conclusion, an efficient hierarchical multilevel potential
preconditioner has been proposed and demonstrated for the
robust, expedient and broad-band finite-element analysis of mi-
crowave devices. Through the combination of the hierarchical
vector and scalar potential formulation with a hierarchical
multilevel preconditioning technique, the ill conditioning of
the FEM matrix is avoided, and a fast converging iterative FEM
solver is obtained. Since the proposed preconditioner requires
the direct factorization of the FEM matrix at the
level, its capability to solve very large problems is limited.
A way to overcome this limitation is to hybridize it with the
nested multigrid potential preconditioner [6]. The merits of this
hybridization are currently under investigation.
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